Cars/Fish/Whatever are $N$ particles with positions $X_n\in[0,2\pi)$ for $n=1,\dots,N$
Introduce a concept of density of particles: $$ \rho(x,t) = \frac{1}{N}\sum_{n=1}^N \delta(x-X_n(t)) $$
with $$ (f\ast\rho)(x,t) = \int_0^{2\pi} f(x-y)\rho(y,t) \mathrm{d}y, \quad \langle \eta(x,t)\eta(y,s) \rangle = \delta(x-y)\delta(t-s) $$
If $g(x)=1$, this reduces to a known case (Dean 1996) $$ \rho_t + \left(\rho(f\ast\rho)\right)_x - D\rho_{xx} + \sqrt{\frac{2D}{N}}(\rho^{\frac{1}{2}}\eta)_x = 0 $$
$$ \rho_{t}+ \left(\rho v(\rho)\right)_x - D\rho_{xx}=0 $$ with $v(\rho)=v_0\left(1-\frac{\rho}{\rho_{max}}\right)$
Without diffusion term we get shock fronts.
Our particles describe the flow of cars along a single lane road
$$ \rho_{t}+ \left(\rho v(\rho)\right)_x - D\rho_{xx}=0 $$ with $v(\rho)=v_0\left(1-\frac{\rho}{\rho_{max}}\right)$
$$ \rho_t + \left(\rho(f\ast\rho)\right)_x - D\left(\rho\left(g\ast\rho\right)^2\right)_{xx} = 0 $$
$$ \begin{aligned} f(x) & = v_0 - \frac{v_0}{\rho_{max}}\delta(x) \\ g(x) & = 1 \end{aligned} $$
Our particles describe the swarming of some organism which only looks ahead of itself
$$ \rho_{t}+\left(\rho(K\ast\rho)\right)_x - D(\rho^3)_{xx}=0 $$
$$ K(x) = \begin{cases} e^{-x}, x\geq 0\\ 0, x \le 0 \end{cases} $$
$$ \rho_t + \left(\rho(f\ast\rho)\right)_x - D\left(\rho\left(g\ast\rho\right)^2\right)_{xx} = 0 $$
$$ \begin{aligned} \Rightarrow f(x) & = K(x) \\ g(x) & = \delta(x) \end{aligned} $$
$g(x)=1-\alpha\cos(x)$ $$ \begin{aligned} \rho_t & = D\left(\rho - 2\alpha\rho(\cos * \rho) \right.\\ & \left.\quad\quad +\alpha^2\rho(\cos * \rho)^2\right)_{xx} \end{aligned} $$
$g(x)=1-\alpha\cos(x)$ $$ \begin{aligned} \rho_t & = D\left(\rho - 2\alpha\rho(\cos * \rho) \right.\\ & \left.\quad\quad +\alpha^2\rho(\cos * \rho)^2\right)_{xx} \end{aligned} $$
Two possible stable steady states: $$ \rho(x,t) = \begin{cases} \frac{1}{2\pi}, & 0 < \alpha < 1 \\ \frac{1}{4\pi}\left(\delta(x-\Delta) + \delta(x+\Delta)\right), & \alpha>1 \end{cases} $$ with $\cos^2(\Delta) = 1/\alpha$.
The Whitham model has a stable, homogeneous state, $\rho(x,t)=\rho_0$. $$ \rho_{t}+ \left(\rho v(\rho)\right)_x - D\rho_{xx} + \sqrt{\frac{2D}{N}}\left(\rho^{\frac{1}{2}}\eta\right)_x = 0 $$
We can characterise the frequency, spacing and strength of these fluctuations.
$$ \rho(x,t) = \frac{1}{2\pi} + \frac{1}{\sqrt{N}}\xi(x,t) $$
Look at the the fourier series in space and FT in time of the density
$$ \varrho_k(\omega) = \frac{1}{2\pi}\delta_{k,0}\delta(\omega) + \frac{1}{\sqrt{N}}\hat{\xi}_k(\omega) $$
$$ \varrho_k(\omega) = \frac{1}{2\pi}\delta_{k,0}\delta(\omega) + \frac{1}{\sqrt{N}}\hat{\xi}_k(\omega) $$
$$ \langle |\hat{\xi}_k(\omega)|^2 \rangle =\frac{D \tilde{g}_{0}^{2} k^{2}}{2 \pi^{2}\left|\left(-J_k^*-i\omega\right)\right|^{2}} $$ $$ J_{k}=ik\left(\tilde{f}_{0}+\tilde{f}_{-k}\right)+k^{2} D \tilde{g}_{0}\left(\tilde{g}_{0}+2 g_{-k}\right) $$
$$ \xi_t = \frac{1}{4t}\left[(r^2(t)-x^2)\xi_{xx} - 4x\xi_x - 2\xi\right] + \left((\rho^*)^{3/2}\eta\right)_x $$ Cumulative moments: $$ M_n(t) := \int_{-\pi}^{\pi} x^n \rho(x,t) \mathrm{d}x $$
Fluctuations in the cumulative moments: $$ Z_n(t) := \sqrt{N}\left(M_n(t) - M_n^*(t)\right) $$
$$ Z_n(t) := \sqrt{N}\left(M_n(t) - M_n^*(t)\right) $$
$$ Z_n'(t) = \frac{n(n-1)}{4t}\left[r^2 Z_{n-2} - Z_n\right] + \int_0^{2\pi} \zeta_n \mathrm{d}x $$
$$ \begin{aligned} \langle Z_1(t)\rangle & = 0 , \quad \langle Z_1^2(t)\rangle = \frac{\sqrt{3Dt}}{\pi} \\ \langle Z_2(t)\rangle & = 0 , \quad \langle Z_2^2(t)\rangle = \frac{t}{4\pi^2} \end{aligned} $$
If we want to explore more complex and interesting examples, we will have to look at particles with stochastic velocities. This might look like $$ \mathrm{d}X_n = U_n \mathrm{d}t $$ $$ \mathrm{d}U_n = \frac{1}{N}\sum_{m=1}^N f(X_m-X_n) \mathrm{d}t + \frac{1}{N}\sum_{m=1}^N g(X_m-X_n)\mathrm{d}W_n $$